Analysis of the Influence of Cybersecurity Awareness on Password Selection Behavior Among Mobile Banking Users in Batam Using Regression Method

Authors

  • Monita Cisilia Panjaitan Politeknik Negeri Batam Author
  • Antoni Haikal Politeknik Negeri Batam Author
  • Sity Rahmy Maulidya Universitas Pahlawan Tuanku Tambusai Author

Keywords:

Mobile Bangking, Cybersecurity Awareness, Password Behaviour

Abstract

Online banking crimes, particularly on the customer side, remain a challenge despite various security measures implemented by banks. This study aims to analyze the influence of cybersecurity awareness on password selection behavior among mobile banking users in Batam. Using a simple linear regression method, the study involved 433 respondents aged 17-65 years. The analysis results indicate that cybersecurity awareness has a positive influence on password selection behavior, with a coefficient of determination (R Square) value of 27.5%. The remaining 72.5% is influenced by other factors not examined in this research. A total of 39.7% of respondents applied optimal password practices, 50.6% demonstrated awareness but had not yet optimized their password choices, while 9.7% required further education. The study also found that higher levels of cybersecurity awareness encouraged better security practices, such as using complex passwords and implementing multi-factor authentication. The findings of this study are expected to serve as a reference for future research development and to encourage efforts to educate the public on the importance of cybersecurity awareness to enhance the security of personal data for mobile banking users.

References

[1] M. Christen, B. Gordijn, and M. Loi, The Ethics of Cybersecurity, vol. 21. Switzerland: Springer Nature Switzerland AG, 2020.

[2] Z. Dlamini and M. Modise, “Cyber security awareness initiatives in South Africa: a synergy approach,” 7th Int. Conf. Inf. Warf. Secur. Univ. Washingt., pp. 62–83, 2012, doi: 10.1007/978-3-8349-4134-3_3.

[3] M. Moore, Cybersecurity Breaches and Issues Surrounding Online Threat Protection. United States of America: IGI Global, 2017.

[4] DPR RI, “Kebocoran Data BSI, OJK Diminta Jalankan Fungsi Akselerasi Digitalisasi Seluruh Bank,” https://www.dpr.go.id/, 2023. https://www.dpr.go.id/berita/detail/id/44937/t/Kebocoran Data BSI, OJK Diminta Jalankan Fungsi Akselerasi Digitalisasi Seluruh Bank

[5] S. Quanjiang, S. Yan, Y. Xiaohu, L. Tinghui, H. Daojing, and Y. Guisong, “Large Scale Firmware Analysis for Open Source Components, Hard Coding and Weak Passwords,” 2021 IEEE Int. Conf. Consum. Electron. Comput. Eng. ICCECE 2021, no. Iccece, pp. 232–236, 2021, doi: 10.1109/ICCECE51280.2021.9342303.

[6] P. Limna, T. Kraiwanit, and S. Siripipattanakul, “The Relationship between Cyber Security Knowledge, Awareness and Behavioural Choice Protection among Mobile Banking Users in Thailand,” Int. J. Comput. Sci. Res., vol. 7, pp. 1133–1151, 2022, doi: 10.25147/ijcsr.2017.001.1.123.

[7] M. Salma and Refi Rifaldi Windya Giri, “Digital Skill Confirmation Factor Analysis on the Use of Mobile Banking Services in the City of Surakarta,” Ilomata Int. J. Manag., vol. 4, no. 2, pp. 249–266, 2023, doi: 10.52728/ijjm.v4i2.756.

[8] N. Pareek, A. Nigam, and N. Bansal, “The Impact of Awareness of Password Management of Digital Banking Services on Customer’s Adoption in India,” Int. J. Bus. Glob., vol. 9, no. 2, 2020, doi: 10.1504/ijbg.2021.10033766.

[9] M. R. Ramadhani and A. R. Pratama, “Analisis Kesadaran Cybersecurity Pada Pengguna Media Sosial Di Indonesia,” J. Darma Agung, vol. 30, no. 1, p. 1164, 2022, doi: 10.46930/ojsuda.v30i1.3167.

[10] I. M. Lina and G. R. Fernandes, “Anticipate Password Security with Burp Suite Using the Brute Force Attack Method,” J. E-Komtek, vol. 7, no. 1, pp. 118–127, 2023, doi: 10.37339/e-komtek.v7i1.1162.

[11] N. A. A. Rahman, I. H. Sairi, N. A. M. Zizi, and F. Khalid, “The importance of cybersecurity education in school,” Int. J. Inf. Educ. Technol., vol. 10, no. 5, pp. 378–382, 2020, doi: 10.18178/ijiet.2020.10.5.1393.

[12] B. Darma, Statistika Penelitian Menggunakan SPSS (Uji Validitas, Uji Reabilitas, Regresi Linear Sederhana, Regresi Linear Berganda, Uji t, Uji F, Uji R2). Jakarta: Guepedia, 2021.

[13] I. Ghozali, Aplikasi Analisis Multivatiate dengan Program IBM SPSS 25, 9th ed. Semarang: Badan Penerbit Universitas Diponegoro, 2018.

[14] P. Romie, Buku Sakti Kuasai SPSS Pegolahan Data & Analisis Data. Yogyakarta: PT Anak Hebat Indonesia, 2017.

[15] I. Ghozali, Aplikasi Analisis Multivariative Dengan Program IBM SPSS 25, 9th ed. Semarang: Badan Penerbit Universitas Dipenogoro, 2018.

[16] Sugiyono, Statistika Untuk Penelitian. Bandung: CV Alfabeta, 2017.

[17] Fauziah and R. Eko, “Pengaruh Persepsi Manfaat Program Star Seller Shopee Terhadap Minat Seller Di Kalimantan Selatan Memilih Shopee Sebagai E-Commerce C2C,” 2021.

[18] Arikunto and Suharsimi, Prosedur Penelitian, Suatu Pendekatan Praktik. Jakarta: Rineka Cipta, 2013.

[19] I. Ghozali and D. Ratmono, Analisis multivariat dan ekonometrika : teori, konsep dan aplikasi dengan eviews 10, 2nd ed. Badan Penerbit Undip, 2017.

[20] D. S. Susanti, Y. Sukmawaty, and N. Salam, Analisis Regresi dan Korelasi. Malang: CV IRDH, 2019.

[21] Sugiarto and H. Setio, Statistika Terapan Untuk Bisnis Dan Ekonomi. Yogyakarta: Penerbit Andi, 2021.

[22] J. Davidson, Stochastic Limit Theory: An Introduction for Econometricians, 2nd ed. 2021.

[23] Y. Luo, Cooperative Design, Visualization, and Engineering: 17th International Conference, CDVE 2020, Bangkok, Thailand, October 25–28, 2020, Proceedings, vol. 12341 LNCS. 2020. doi: 10.1007/978-3-030-60816-3_40.

Downloads

Published

2025-07-01

Issue

Section

Articles

How to Cite

[1]
“Analysis of the Influence of Cybersecurity Awareness on Password Selection Behavior Among Mobile Banking Users in Batam Using Regression Method”, astj , vol. 1, no. 1, pp. 13–21, Jul. 2025, Accessed: Jul. 26, 2025. [Online]. Available: https://astj.org/index.php/astj/article/view/3